
django-photologue Documentation
Release 3.4

Justin Driscoll/Richard Barran

December 23, 2015

Contents

1 Installation & configuration 3
1.1 Installation . 3
1.2 Dependencies . 3
1.3 Configure Your Django Settings file . 4
1.4 Add the urls . 4
1.5 Sync Your Database . 4
1.6 Instant templates . 5
1.7 Sitemap . 5
1.8 Sites . 5
1.9 Amazon S3 . 5

2 Customisation: extending templates 7

3 Customisation: Settings 9
3.1 PHOTOLOGUE_GALLERY_LATEST_LIMIT . 9
3.2 PHOTOLOGUE_GALLERY_SAMPLE_SIZE . 9
3.3 PHOTOLOGUE_IMAGE_FIELD_MAX_LENGTH . 9
3.4 PHOTOLOGUE_SAMPLE_IMAGE_PATH . 9
3.5 PHOTOLOGUE_MAXBLOCK . 9
3.6 PHOTOLOGUE_DIR . 10
3.7 PHOTOLOGUE_PATH . 10
3.8 PHOTOLOGUE_MULTISITE . 10

4 Customisation: Admin 11
4.1 Create a customisation application . 11
4.2 Changing the admin . 11
4.3 Possible uses . 12

5 Customisation: Views and Urls 13
5.1 Create a customisation application . 13
5.2 Changing pagination from our new urls.py . 13
5.3 Values that can be overridden from urls.py . 14
5.4 Changing views.py to create a RESTful api . 14

6 Customisation: Models 17
6.1 Create a customisation application . 17
6.2 Extending . 17

7 Customisation: third-party contributions 19

i

7.1 Old-style templates . 19

8 Contributing to Photologue 21
8.1 Example project . 21
8.2 Workflow . 21
8.3 Coding style . 21
8.4 Unit tests . 21
8.5 Documentation . 22
8.6 Translations . 22
8.7 New features . 22
8.8 And finally... 22

9 Changelog 23
9.1 3.4 (2015-12-23) . 23
9.2 3.3.2 (2015-07-20) . 23
9.3 3.3.1 (2015-07-20) . 23
9.4 3.3 (2015-07-20) . 23
9.5 3.2 (2015-05-11) . 24
9.6 3.1.1 (2014-11-13) . 24
9.7 3.1 (2014-11-03) . 24
9.8 3.0.2 (2014-09-23) . 24
9.9 3.0.1 (2014-09-16) . 25
9.10 3.0 (2014-09-15) . 25
9.11 2.8.3 (2014-08-28) . 25
9.12 2.8.2 (2014-07-26) . 26
9.13 2.8.1 (2014-07-26) . 26
9.14 2.8 (2014-05-04) . 26
9.15 2.7 (2013-10-27) . 26
9.16 2.6.1 (2013-05-19) . 27
9.17 2.6 (2013-05-19) . 27
9.18 2.5 (2012-12-13) . 28
9.19 2.4 (2012-08-13) . 28

10 Indices and tables 29

ii

django-photologue Documentation, Release 3.4

The Photologue documentation is being transferred from a Google Code wiki to a Sphinx-generated setup (if you’re
reading this at readthedocs.org, then you’re looking at these docs).

This documentation is accurate and up-to-date (hopefully!); the old docs on the Google Code wiki are extensive but
have not been updated in a long time.

Contents:

Contents 1

http://code.google.com/p/django-photologue/w/list

django-photologue Documentation, Release 3.4

2 Contents

CHAPTER 1

Installation & configuration

1.1 Installation

The easiest way to install Photologue is with pip; this will give you the latest version available on PyPi:

pip install django-photologue

You can also take risks and install the latest code directly from the Github repository:

pip install -e git+https://github.com/jdriscoll/django-photologue.git#egg=django-photologue

This code should work ok - like Django itself, we try to keep the master branch bug-free. However, we strongly
recommend that you stick with a release from the PyPi repository, unless if you’re confident in your abilities to fix any
potential bugs on your own!

1.1.1 Python 3

Photologue works with Python 3 (3.3 or later).

1.2 Dependencies

3 apps that will be installed automatically if required.

• Django.

• Pillow.

• Django-sortedm2m.

And 1 dependency that you will have to manage yourself:

• Pytz. See the Django release notes for more information.

Note: Photologue tries to support the same Django version as are supported by the Django project itself.

1.2.1 That troublesome Pillow...

Pillow can be tricky to install; sometimes it will install smoothly out of the box, sometimes you can spend hours
figuring it out - installation issues vary from platform to platform, and from one OS release to the next, so listing them

3

https://pip.pypa.io/en/latest/
https://pypi.python.org/pypi
https://www.djangoproject.com/
https://www.djangoproject.com/
http://python-imaging.github.io/Pillow/
https://pypi.python.org/pypi/django-sortedm2m
https://pypi.python.org/pypi/pytz
https://docs.djangoproject.com/en/1.6/releases/1.6/#time-zone-aware-day-month-and-week-day-lookups

django-photologue Documentation, Release 3.4

all here would not be realistic. Google is your friend, and it’s worth noting that Pillow is a fork of PIL, so googling
‘PIL installation <your platform>’ can also help.

1. You should not have installed both PIL and Pillow; this can cause strange bugs. Please uninstall PIL before you
install Pillow.

2. In some situations, you might not be able to use Pillow at all (e.g. if another package has a dependency on
PIL). Photologue has a clumsy answer for this: write a temporary file /tmp/PHOTOLOGUE_NO_PILLOW,
then install Photologue. This will tell Photologue to install without Pillow. It should work, but it hasn’t been
tested!

3. Sometimes Pillow will install... but is not actually installed. This ‘undocumented feature’ has been reported
by a user on Windows. If you can’t get Photologue to display any images, check that you can actually import
Pillow:

$ python manage.py shell
Python 3.3.1 (default, Sep 25 2013, 19:29:01)
[GCC 4.7.3] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from PIL import Image
>>>

1.3 Configure Your Django Settings file

1. Add to your INSTALLED_APPS setting:

INSTALLED_APPS = (
...other installed applications...
'photologue',
'sortedm2m',

)

2. Confirm that your MEDIA_ROOT and MEDIA_URL settings are correct (Photologue will store uploaded files
in a folder called ‘photologue’ under your MEDIA_ROOT).

3. Enable the admin app if you have not already done so.

4. Django has an optional site framework. This is not enabled by default in Django, but is required by Photologue.

1.4 Add the urls

Add photologue to your projects urls.py file:

urlpatterns += patterns('',
...
url(r'^photologue/', include('photologue.urls', namespace='photologue')),

)

1.5 Sync Your Database

You can now sync your database:

4 Chapter 1. Installation & configuration

https://docs.djangoproject.com/en/dev/ref/settings/#media-root
https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-MEDIA_URL
https://docs.djangoproject.com/en/dev/ref/contrib/admin/
https://docs.djangoproject.com/en/dev/ref/contrib/sites/#enabling-the-sites-framework

django-photologue Documentation, Release 3.4

python manage.py migrate photologue

If you are installing Photologue for the first time, this will set up some default PhotoSizes to get you started - you are
free to change them of course!

1.6 Instant templates

Photologue comes with basic templates for galleries and photos, which are designed to work well with Twitter-
Bootstrap. You can of course override them, or completely replace them. Note that all Photologue templates inherit
from photologue/root.html, which itself just inherits from a site-wide base.html - you can change this to
use a different base template.

1.7 Sitemap

1.8 Sites

Photologue supports Django’s site framework since version 2.8. That means that each Gallery and each Photo can be
displayed on one or more sites.

Please bear in mind that photos don’t necessarily have to be assigned to the same sites as the gallery they’re belonging
to: each gallery will only display the photos that are on its site. When a gallery does not belong the current site but a
single photo is, that photo is only accessible directly as the gallery won’t be shown in the index.

Note: If you’re upgrading from a version earlier than 2.8 you don’t need to worry about the assignment of already
existing objects to a site because a datamigration will assign all your objects to the current site automatically.

Note: This feature is switched off by default. See here to enable it and for more information.

1.9 Amazon S3

Photologue can use a custom file storage system, for example Amazon’s S3.

You will need to configure your Django project to use Amazon S3 for storing files; a full discussion of how to do this
is outside the scope of this page.

However, there is a quick demo of using Photologue with S3 in the example_project directory; if you look at
these files:

• example_project/example_project/settings.py

• example_project/requirements.txt

At the end of each file you will commented-out lines for configuring S3 functionality. These point to extra files stored
under example_project/example_storages/. Uncomment these lines, run the example project, then study
these files for inspiration! After that, setting up S3 will consist of (at minimum) the following steps:

1. Signup for Amazon AWS S3 at http://aws.amazon.com/s3/.

2. Create a Bucket on S3 to store your media and static files.

3. Set the environment variables:

1.6. Instant templates 5

http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html
http://django.readthedocs.org/en/latest/ref/contrib/sites.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/

django-photologue Documentation, Release 3.4

• AWS_ACCESS_KEY_ID - issued to your account by S3.

• AWS_SECRET_ACCESS_KEY - issued to your account by S3.

• AWS_STORAGE_BUCKET_NAME - name of your bucket on S3.

4. To copy your static files into your S3 Bucket, type python manage.py collectstatic in the
example_project directory.

Note: This simple setup does not handle S3 regions.

6 Chapter 1. Installation & configuration

CHAPTER 2

Customisation: extending templates

Photologue comes with a set of basic templates to get you started quickly - you can of course replace them with
your own. That said, it is possible to extend the basic templates in your own project and override various blocks, for
example to add css classes. Often this will be enough.

The trick to extending the templates is not special to Photologue, it’s used in other projects such as Oscar.

First, set up your template configuration as so:

TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',

)

from photologue import PHOTOLOGUE_APP_DIR
TEMPLATE_DIRS = (

...other template folders...,
PHOTOLOGUE_APP_DIR

)

The PHOTOLOGUE_APP_DIR points to the directory above Photologue’s normal templates di-
rectory. This means that path/to/photologue/template.html can also be reached via
templates/path/to/photologue/template.html.

For example, to customise photologue/gallery_list.html, you can have an implementation like:

Create your own photologue/gallery_list.html
{% extends "templates/photologue/gallery_list.html" %}

... we are now extending the built-in gallery_list.html and we can override
the content blocks that we want to customise ...

7

https://django-oscar.readthedocs.org/en/latest/recipes/how_to_customise_templates.html

django-photologue Documentation, Release 3.4

8 Chapter 2. Customisation: extending templates

CHAPTER 3

Customisation: Settings

Photologue has several settings to customise behaviour.

3.1 PHOTOLOGUE_GALLERY_LATEST_LIMIT

Default: None

Default limit for gallery.latest

3.2 PHOTOLOGUE_GALLERY_SAMPLE_SIZE

Default: 5

Number of random images from the gallery to display.

3.3 PHOTOLOGUE_IMAGE_FIELD_MAX_LENGTH

Default: 100

max_length setting for the ImageModel ImageField

3.4 PHOTOLOGUE_SAMPLE_IMAGE_PATH

Default: os.path.join(os.path.dirname(__file__), ’res’, ’sample.jpg’))

Path to sample image

3.5 PHOTOLOGUE_MAXBLOCK

Default: 256 * 2 ** 10

Modify image file buffer size.

9

django-photologue Documentation, Release 3.4

3.6 PHOTOLOGUE_DIR

Default: ’photologue’

The relative path from your MEDIA_ROOT setting where Photologue will save image files. If your MEDIA_ROOT is
set to “/home/user/media”, photologue will upload your images to “/home/user/media/photologue”

3.7 PHOTOLOGUE_PATH

Default: None

Look for user function to define file paths. Specifies a “callable” that takes a model instance and the original uploaded
filename and returns a relative path from your MEDIA_ROOT that the file will be saved. This function can be set
directly.

For example you could use the following code in a util module:

myapp/utils.py:

import os

def get_image_path(instance, filename):
return os.path.join('path', 'to', 'my', 'files', filename)

Then set in settings:

settings.py:

from utils import get_image_path

PHOTOLOGUE_PATH = get_image_path

Or instead, pass a string path:

settings.py:

PHOTOLOGUE_PATH = 'myapp.utils.get_image_path'

3.8 PHOTOLOGUE_MULTISITE

Default: False

Photologue can integrate galleries and photos with Django’s site framework. Default is for this feature to be switched
off, as only a minority of Django projects will need it.

In this case, new galleries and photos are automatically linked to the current site (SITE_ID = 1). The Sites many-
to-many field is hidden is the admin, as there is no need for a user to see it.

If the setting is True, the admin interface is slightly changed:

• The Sites many-to-many field is displayed on Gallery and Photos models.

• The Gallery Upload allows you to associate one more sites to the uploaded photos (and gallery).

Note: Gallery Uploads (zip archives) are always associated with the current site. Pull requests to fix this would be
welcome!

10 Chapter 3. Customisation: Settings

http://django.readthedocs.org/en/latest/ref/contrib/sites.html

CHAPTER 4

Customisation: Admin

The Photologue admin can easily be customised to your project’s requirements. The technique described on this page
is not specific to Photologue - it can be applied to any 3rd party library.

4.1 Create a customisation application

For clarity, it’s best to put our customisation code in a new application; let’s call it photologue_custom; create
the application and add it to your INSTALLED_APPS setting.

4.2 Changing the admin

In the new photologue_custom application, create a new empty admin.py file. In this file we can replace the
admin configuration supplied by Photologue, with a configuration specific to your project. For example:

from django import forms
from django.contrib import admin

from photologue.admin import GalleryAdmin as GalleryAdminDefault
from photologue.models import Gallery

class GalleryAdminForm(forms.ModelForm):
"""Users never need to enter a description on a gallery."""

class Meta:
model = Gallery
exclude = ['description']

class GalleryAdmin(GalleryAdminDefault):
form = GalleryAdminForm

admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)

This snippet will define a new Gallery admin class based on Photologue’s own. The only change we make is to exclude
the description field from the change form.

We then unregister the default admin for the Gallery model and replace it with our new class.

11

django-photologue Documentation, Release 3.4

4.3 Possible uses

The technique outlined above can be used to make many changes to the admin; here are a couple of suggestions.

4.3.1 Custom rich text editors

The description field on the Gallery model (and the caption field on the Photo model) are plain text fields. With the
above technique, it’s easy to use a rich text editor to manage these fields in the admin. For example, if you have
django-ckeditor installed:

from django import forms
from django.contrib import admin

from ckeditor.widgets import CKEditorWidget
from photologue.admin import GalleryAdmin as GalleryAdminDefault
from photologue.models import Gallery

class GalleryAdminForm(forms.ModelForm):
"""Replace the default description field, with one that uses a custom widget."""

description = forms.CharField(widget=CKEditorWidget())

class Meta:
model = Gallery
exclude = ['']

class GalleryAdmin(GalleryAdminDefault):
form = GalleryAdminForm

admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)

12 Chapter 4. Customisation: Admin

https://github.com/shaunsephton/django-ckeditor

CHAPTER 5

Customisation: Views and Urls

The photologue views and urls can be tweaked to better suit your project. The technique described on this page is not
specific to Photologue - it can be applied to any 3rd party library.

5.1 Create a customisation application

For clarity, it’s best to put our customisation code in a new application; let’s call it photologue_custom; create
the application and add it to your INSTALLED_APPS setting.

We will also want to customise urls:

1. Create a urls.py that will contain our customised urls:

from django.conf.urls import *

urlpatterns = patterns('',

Nothing to see here... for now.

)

2. These custom urls will override the main Photologue urls, so place them just before Photologue in the project’s
main urls.py file:

... other code
(r'^photologue/', include('photologue_custom.urls')),
url(r'^photologue/', include('photologue.urls', namespace='photologue')),

... other code

Now we’re ready to make some changes.

5.2 Changing pagination from our new urls.py

The list pages of Photologue (both Gallery and Photo) display 20 objects per page. Let’s change this value. Edit our
new urls.py file, and add:

from django.conf.urls import *

from photologue.views import GalleryListView

13

django-photologue Documentation, Release 3.4

urlpatterns = patterns('',

url(r'^gallerylist/$',
GalleryListView.as_view(paginate_by=5), name='photologue_custom-gallery-list'),

)

We’ve copied the urlpattern for the gallery list view from Photologue itself, and changed it slightly by passing in
paginate_by=5.

And that’s it - now when that page is requested, our customised urls.py will be called first, with pagination set to 5
items.

5.3 Values that can be overridden from urls.py

5.3.1 GalleryListView

• paginate_by: number of items to display per page.

5.3.2 PhotoListView

• paginate_by: number of items to display per page.

5.4 Changing views.py to create a RESTful api

More substantial customisation can be carried out by writing custom views. For example, it’s easy to change a
Photologue view to return JSON objects rather than html webpages. For this quick demo, we’ll use the django-braces
library to override the view returning a list of all photos.

Add the following code to views.py in photologue_custom:

from photologue.views import PhotoListView

from braces.views import JSONResponseMixin

class PhotoJSONListView(JSONResponseMixin, PhotoListView):

def render_to_response(self, context, **response_kwargs):
return self.render_json_object_response(context['object_list'],

**response_kwargs)

And call this new view from urls.py; here we are replacing the standard Photo list page provided by Photologue:

from .views import PhotoJSONListView

urlpatterns = patterns('',

Other urls...

url(r'^photolist/$',
PhotoJSONListView.as_view(),
name='photologue_custom-photo-json-list'),

14 Chapter 5. Customisation: Views and Urls

https://github.com/jdriscoll/django-photologue/blob/master/photologue/urls.py
http://django-braces.readthedocs.org/en/latest/index.html
http://django-braces.readthedocs.org/en/latest/index.html

django-photologue Documentation, Release 3.4

Other urls as required...
)

And that’s it! Of course, this is simply a demo and a real RESTful api would be rather more complex.

5.4. Changing views.py to create a RESTful api 15

django-photologue Documentation, Release 3.4

16 Chapter 5. Customisation: Views and Urls

CHAPTER 6

Customisation: Models

The photologue models can be extended to better suit your project. The technique described on this page is not specific
to Photologue - it can be applied to any 3rd party library.

The models within Photologue cannot be directly modified (unlike, for example, Django’s own User model). There
are a number of reasons behind this decision, including:

• If code within a project modifies directly the Photologue models’ fields, it leaves the Photologue schema migra-
tions in an ambiguous state.

• Likewise, model methods can no longer be trusted to behave as intended (as fields on which they depend may
have been overridden).

However, it’s easy to create new models linked by one-to-one relationships to Photologue’s own Gallery and Photo
models.

On this page we will show how you can add tags to the Gallery model. For this we will use the popular 3rd party
application django-taggit.

Note: The Gallery and Photo models currently have tag fields, however these are based on the abandonware
django-tagging application. Instead, tagging is being entirely removed from Photologue, as it is a non-core function-
ality of a gallery application, and is easy to add back in - as this page shows!

6.1 Create a customisation application

For clarity, it’s best to put our customisation code in a new application; let’s call it photologue_custom; create
the application and add it to your INSTALLED_APPS setting.

6.2 Extending

Within the photologue_custom application, we will edit 2 files:

6.2.1 Models.py

from django.db import models

from taggit.managers import TaggableManager

17

https://github.com/alex/django-taggit
https://github.com/brosner/django-tagging

django-photologue Documentation, Release 3.4

from photologue.models import Gallery

class GalleryExtended(models.Model):

Link back to Photologue's Gallery model.
gallery = models.OneToOneField(Gallery, related_name='extended')

This is the important bit - where we add in the tags.
tags = TaggableManager(blank=True)

Boilerplate code to make a prettier display in the admin interface.
class Meta:

verbose_name = u'Extra fields'
verbose_name_plural = u'Extra fields'

def __str__(self):
return self.gallery.title

6.2.2 Admin.py

from django.contrib import admin

from photologue.admin import GalleryAdmin as GalleryAdminDefault
from photologue.models import Gallery
from .models import GalleryExtended

class GalleryExtendedInline(admin.StackedInline):
model = GalleryExtended
can_delete = False

class GalleryAdmin(GalleryAdminDefault):

"""Define our new one-to-one model as an inline of Photologue's Gallery model."""

inlines = [GalleryExtendedInline,]

admin.site.unregister(Gallery)
admin.site.register(Gallery, GalleryAdmin)

The above code is enough to start entering tags in the admin interface. To use/display them in the front end, you
will also need to override Photologue’s own templates - as the templates are likely to be heavily customised for your
specific project, an example is not included here.

18 Chapter 6. Customisation: Models

CHAPTER 7

Customisation: third-party contributions

Photologue has a ‘contrib’ folder that includes some useful tweaks to the base project. At the moment, we have just
one contribution:

7.1 Old-style templates

Replaces the normal templates with the templates that used to come with Photologue 2.X. Use these if you have an
existing project that extends these ‘old-style’ templates.

To use these, edit your TEMPLATE_DIRS setting:

from photologue import PHOTOLOGUE_APP_DIR
TEMPLATE_DIRS = (

...
os.path.join(PHOTOLOGUE_TEMPLATE_DIR, 'contrib/old_style_templates'),
... other folders containing Photologue templates should come after...

)

19

django-photologue Documentation, Release 3.4

20 Chapter 7. Customisation: third-party contributions

CHAPTER 8

Contributing to Photologue

Contributions are always very welcome. Even if you have never contributed to an open-source project before - please
do not hesitate to offer help. Fixes for typos in the documentation, extra unit tests, etc... are welcome. And look in the
issues list for anything tagged “easy_win”.

8.1 Example project

Photologue includes an example project under /example_project/ to get you quickly ready for contributing to
the project - do not hesitate to use it! Please refer to /example_project/README.rst for installation instruc-
tions.

You’ll probably also want to manually install Sphinx if you’re going to update the documentation.

8.2 Workflow

Photologue is hosted on Github, so if you have not already done so, read the excellent Github help pages. We try to
keep the workflow as simple as possible; most pull requests are merged straight into the master branch. Please ensure
your pull requests are on separate branches, and please try to only include one new feature per pull request!

Features that will take a while to develop might warrant a separate branch in the project; at present only the ImageKit
integration project is run on a separate branch.

8.3 Coding style

No surprises here - just try to follow the conventions used by Django itself.

8.4 Unit tests

Including unit tests with your contributions will earn you bonus points, maybe even a beer. So write plenty of tests,
and run them from the /example_project/ with a python manage.py test photologue.

21

http://sphinx.pocoo.org/
https://help.github.com/articles/fork-a-repo
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/

django-photologue Documentation, Release 3.4

8.5 Documentation

Keeping the documentation up-to-date is very important - so if your code changes how Photologue works, or adds a
new feature, please check that the documentation is still accurate, and update it if required.

We use Sphinx to prepare the documentation; please refer to the excellent docs on that site for help.

Note: The CHANGELOG is part of the documentation, so if your patch needs the end user to do something - e.g.
run a South migration - don’t forget to update it!

8.6 Translations

Photologue manages string translations with Transifex. The easiest way to help is to add new/updated translations
there.

Once you’ve added translations, give the maintainer a wave and he will pull the updated translations into the master
branch, so that you can install Photologue directly from the Github repository (see Installation) and use your trans-
lations straight away. Or you can do nothing - just before a release any new/updated translations get pulled from
Transifex and added to the Photologue project.

8.7 New features

In the wiki there is a wishlist of new features already planned for Photologue - you are welcome to suggest other useful
improvements.

If you’re interested in developing a new feature, it is recommended that you first discuss it on the mailing list or open
a new ticket in Github, in order to avoid working on a feature that will not get accepted as it is judged to not fit in with
the goals of Photologue.

8.7.1 A bit of history

Photologue was started by Justin Driscoll in 2007. He quickly built it into a powerful photo gallery and image
processing application, and it became successful.

Justin then moved onto other projects, and no longer had the time required to maintain Photologue - there was only
one commit between August 2009 and August 2012, and approximately 70 open tickets on the Google Code project
page.

At this point Richard Barran took over as maintainer of the project. First priority was to improve the infrastructure
of the project: moving to Github, adding South, Sphinx for documentation, Transifex for translations, Travis for
continuous integration, zest.releaser.

The codebase has not changed much so far - and it needs quite a bit of TLC (Tender Loving Care), and new features
are waiting to be added. This is where you step in...

8.8 And finally...

Please remember that the maintainer looks after Photologue in his spare time - so it might be a few weeks before your
pull request gets looked at... and the pull requests that are nicely formatted, with code, tests and docs included, will
always get reviewed first ;-)

22 Chapter 8. Contributing to Photologue

http://sphinx.pocoo.org/
https://www.transifex.com/projects/p/django-photologue/
https://github.com/jdriscoll/django-photologue/wiki/Photologue-3.X-wishlist
http://groups.google.com/group/django-photologue

CHAPTER 9

Changelog

9.1 3.4 (2015-12-23)

Upgrade notes: - The EXIF property of an Image is now a method instead.

• Dropped support for Django 1.7.

• Fixed a few minor issues with the unit tests.

• Adding a watermark was crashing (fix suggested by hambro).

• Added/updated translations: Danish, Slovak (contributed by Rasmus Klett, saboter).

• Fixed Django 1.9 Deprecation warnings (contributed by jlemaes).

• Processing of EXIF data was broken (and very broken in Python 3) - updated library and bug fixes.

9.2 3.3.2 (2015-07-20)

• Release Photologue as a universal wheel.

9.3 3.3.1 (2015-07-20)

• Upload of 3.3 to Pypi had failed.

9.4 3.3 (2015-07-20)

• In the initial data setup, the ‘thumbnail’ photosizes should not increment the view count (issue #133).

• Fix typo in admin text (issue reported by Transifex user ciastko).

• Updated translations: Hungarian, Czech, Dutch.

• Zip upload used gallery title instead of “Title” field for photos (#139).

• Zip upload: an uploaded photo is not a duplicate of an existing photo simply because they share the same slug.

• Updated django-sortedm2m version - this should help admin performance for galleries with lots of photos.

23

django-photologue Documentation, Release 3.4

9.5 3.2 (2015-05-11)

• Dropped support for Django 1.6.

• Rotation of photos based upon EXIF data if available, so they get displayed correctly (#122).

• Misc doc tweaks.

• Only clear scale cache if image has changed.

• Pagination is now hard-coded to 20 items per page - it’s a convenience to have it available as soon as the app is
run, but having settings to tweak this value is not needed as it’s so easy to override in a Django project.

• PHOTOLOGUE_GALLERY_PAGINATE_BY and PHOTOLOGUE_PHOTO_PAGINATE_BY were previ-
ously deprecated and have now been removed.

• Tagging has been removed from Photologue.

• All references to ‘title_slug’ field have been removed.

• Django can now natively chain custom manager filters - so the dependency on django-model-utils is removed.

• Updated German translation.

• Improved setup file.

9.6 3.1.1 (2014-11-13)

• The ‘zip upload’ functionality did not work (the required html templates were not included into the released
package).

• Updated French translation.

9.7 3.1 (2014-11-03)

• The ‘zip upload’ functionality has been moved to a custom admin page.

• Refactor add_accessor_methods to be lazily applied (see #110).

• Updated German translation.

• Several improvements to the sample Bootstrap templates.

• Support CACHEDIR.TAG spec issue #89

• Fix issue #99 by adding 10 extra char to photo title(max gallery size up to 999999999 images)

• Sitemap.xml was not aware of Sites (#104).

• In python 3, gallery upload would crash if uploaded file was not a zip file (#106).

9.8 3.0.2 (2014-09-23)

• Updated django-sortedm2m to an official release.

• Updated Spanish translation.

• Updated Bootstrap version used in example project.

24 Chapter 9. Changelog

django-photologue Documentation, Release 3.4

9.9 3.0.1 (2014-09-16)

• Missed out some templates from the released package.

9.10 3.0 (2014-09-15)

Upgrade notes:

WARNING: IF YOU’RE USING POSTGRESQL AS A DATABASE & DJANGO 1.7, THE LATEST RELEASE OF
DJANGO-SORTEDM2M HAS A BUG. INSTEAD, YOU’LL HAVE TO MANUALLY INSTALL:

pip install -e git://github.com/richardbarran/django-sortedm2m.git@9a609a1c6b790a40a016e4ceadedbb6dd6b92010#egg=sortedm2m

THE FOLLOWING CHANGES BREAK BACKWARDS COMPATIBILITY!

• Django 1.7 comes with a new migrations framework which replaces South - if you continue to use Django 1.6,
you’ll need to add new settings. Please refer in the docs to the installation instructions. If you’re upgrading to
Django 1.7 - upgrade Photologue first, THEN upgrade Django.

• The Twitter-Bootstrap templates - previously in ‘contrib’ - become the default; the previous templates are moved
to ‘contrib’.

• The django-tagging library is no longer maintained by its author. As a conse-
quence, it has been disabled - see the docs for more information (page https://django-
photologue.readthedocs.org/en/latest/pages/customising/settings.html#photologue-enable-tags)

• Support for Django 1.4 and 1.5 has been dropped (Photologue depends on django-sortedm2m, which has
dropped support for 1.4; and Django 1.5 is no longer supported).

• PHOTOLOGUE_USE_CKEDITOR has been removed.

• Many urls have been renamed; photologue urls now go into their own namespace. See the urls.py file for all the
changes.

Other changes:

• Support for Amazon S3 to store images (thank you Celia Oakley!).

• List views have changed urls: instead of /page/<n>/, we now have a /?page=<n> pattern. This is a more common
style, and allows us to simplify template code e.g. paginators!

• date_taken field not correctly handled during single photo upload (#80).

• Removed deprecated PhotologueSitemap.

• Gallery zip uploads would fail if the title contained unicode characters.

• Gallery-uploads: Do not require title for uploading to existing gallery (#98).

• The Photologue urls used to use names for months; this has been changed to using numbers, which is better for
non-English websites (#101).

9.11 2.8.3 (2014-08-28)

• Updated Spanish translation.

9.9. 3.0.1 (2014-09-16) 25

https://django-photologue.readthedocs.org/en/latest/pages/customising/settings.html#photologue-enable-tags
https://django-photologue.readthedocs.org/en/latest/pages/customising/settings.html#photologue-enable-tags

django-photologue Documentation, Release 3.4

9.12 2.8.2 (2014-07-26)

• The latest release of django-sortedm2m is not compatible with older versions of Django, so don’t use it (issue
#92).

9.13 2.8.1 (2014-07-26)

• Fixed issue #94 (problem with i18n plural forms).

• Updated Slovak translation.

9.14 2.8 (2014-05-04)

Upgrade notes:

1. Photologue now depends on django-sortedm2m and django-model-utils - please refer to installation instructions.
These dependencies should be added automatically.

2. Run South migrations.

List of changes:

• Photo and Gallery models now support Django’s sites framework.

• Photologue now uses django-sortedm2m to sort photos in a gallery.

• Major rewrite of zip archive uploader: warn users of files that could not be processed, get code to work with
Python 3 (issue #71), add extra error handling.

• Renamed field title_slug to slug - this allows us to simplify views.py a bit.

• PHOTOLOGUE_USE_CKEDITOR, PHOTOLOGUE_GALLERY_PAGINATE_BY and PHOTO-
LOGUE_PHOTO_PAGINATE_BY are deprecated.

• Fixed pagination controls for photo list template.

• Tightened naming rules for Photosize names.

• Fixed a couple of unicode-related bugs.

• Added to the documentation pages describing how to customise the admin and the views.

• Refactored slightly views.py.

• Started work on chainable querysets.

9.15 2.7 (2013-10-27)

Upgrade notes:

1. All settings are now prefixed with PHOTOLOGUE_. Please check that you are not affected by this.

List of changes:

• Fixed issue #56, Gallery pagination is broken.

• Photologue now works with Python 3.

26 Chapter 9. Changelog

django-photologue Documentation, Release 3.4

• Added a set of templates that work well with Twitter-Bootstrap 3, and used them for the ‘example_project’.

• Fixed issue #64 (allow installation without installing Pillow).

• Optional use of CKEditor.

• Updated/new translations for Polish, Slovak and German.

• Bugfix: allow viewing latest galleries/latest photos pages even if they are empty.

• Started using factory-boy - makes unit tests a bit easier to read.

• Added settings to customise pagination count on list pages.

• Documented all settings.

• All settings are now prefixed with PHOTOLOGUE_.

9.16 2.6.1 (2013-05-19)

List of changes:

• Fixed broken packaging in release 2.6.

9.17 2.6 (2013-05-19)

Upgrade notes:

1. Photologue now relies on Pillow instead of PIL. The easiest way to upgrade is to remove PIL completely, then
install the new version of Photologue.

2. Photologue, in line with Django itself, has dropped support for Django 1.3.

List of changes:

• Switched from PIL to Pillow - hopefully this should make installation easier.

• Initial setup of data: removed plinit and replaced it with a South data migration.

• Added feature to allow extending the built-in templates (and documented it!).

• Allow editing of Photo added date (temp way of sorting photos).

• Added an example project to help people wanting to contribute to the project.

• Fixed buggy Travis CI script.

• fixed issue #52, transactions in migration

• fixed issue #51, uniqueness collisions in migration

• Accessing the root url (usually /photologue/ will now redirect you to the gallery list view.

• Photologue requires min. Django 1.4.

• Tidied a data validator on PhotoSizes.

9.16. 2.6.1 (2013-05-19) 27

django-photologue Documentation, Release 3.4

9.18 2.5 (2012-12-13)

• added a sitemap.xml.

• added some templatetags.

• started using Sphinx for managing documentation.

• started using Transifex for managing translations.

• started using Travis CI.

• added 12 new translations and improved some of the existing translations.

• fixed issue #29 (quote URL of resized image properly).

• misc improvements to clarity of unit tests.

• added Django 1.4 timezone support.

9.19 2.4 (2012-08-13)

Upgrade notes:

1. Starting with this version, Photologue uses South to manage the database schema. If you
are upgrading an existing Photologue installation, please follow the South instructions at:
http://south.readthedocs.org/en/latest/convertinganapp.html#converting-other-installations-and-servers

2. Photologue has dropped support for Django 1.2.

List of changes:

• use South to manage schema changes.

• updated installation instructions.

• fixed issue #9 (In Django 1.3, FileField no longer deletes files).

• switched from function-based generic views to class-based views.

• fixed PendingDeprecationWarnings seen when running Django 1.3 - this will make the move to Django 1.5
easier.

• added unit tests.

• fixed bug where GALLERY_SAMPLE_SIZE setting was not being used.

• fixed issue #11 (GalleryUpload with len(title) > 50 causes a crash).

• fixed issue #10 (Increase the size of the name field for photosize).

28 Chapter 9. Changelog

http://south.readthedocs.org/en/latest/convertinganapp.html#converting-other-installations-and-servers

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

29

	Installation & configuration
	Installation
	Dependencies
	Configure Your Django Settings file
	Add the urls
	Sync Your Database
	Instant templates
	Sitemap
	Sites
	Amazon S3

	Customisation: extending templates
	Customisation: Settings
	PHOTOLOGUE_GALLERY_LATEST_LIMIT
	PHOTOLOGUE_GALLERY_SAMPLE_SIZE
	PHOTOLOGUE_IMAGE_FIELD_MAX_LENGTH
	PHOTOLOGUE_SAMPLE_IMAGE_PATH
	PHOTOLOGUE_MAXBLOCK
	PHOTOLOGUE_DIR
	PHOTOLOGUE_PATH
	PHOTOLOGUE_MULTISITE

	Customisation: Admin
	Create a customisation application
	Changing the admin
	Possible uses

	Customisation: Views and Urls
	Create a customisation application
	Changing pagination from our new urls.py
	Values that can be overridden from urls.py
	Changing views.py to create a RESTful api

	Customisation: Models
	Create a customisation application
	Extending

	Customisation: third-party contributions
	Old-style templates

	Contributing to Photologue
	Example project
	Workflow
	Coding style
	Unit tests
	Documentation
	Translations
	New features
	And finally...

	Changelog
	3.4 (2015-12-23)
	3.3.2 (2015-07-20)
	3.3.1 (2015-07-20)
	3.3 (2015-07-20)
	3.2 (2015-05-11)
	3.1.1 (2014-11-13)
	3.1 (2014-11-03)
	3.0.2 (2014-09-23)
	3.0.1 (2014-09-16)
	3.0 (2014-09-15)
	2.8.3 (2014-08-28)
	2.8.2 (2014-07-26)
	2.8.1 (2014-07-26)
	2.8 (2014-05-04)
	2.7 (2013-10-27)
	2.6.1 (2013-05-19)
	2.6 (2013-05-19)
	2.5 (2012-12-13)
	2.4 (2012-08-13)

	Indices and tables

